Skip to main content

Robotic Fish Patrol Waters for Pollutants

 This Research in Action article was provided to LiveScience in partnership with the National Science Foundation.
Both freshwater and marine environments are facing constant threats from climate change, industrial pollution and improper waste disposal, among other factors. Monitoring water quality and pollutants is critical to ensuring the health and safety of aquatic and marine ecosystems. Take an oil spill as an example: tracking down (often invisible) oil plumes helps us understand and mitigate a spill’s impact.
Monitoring an underwater environment is not easy. Water conditions vary with time and with location, which calls for pervasive, continuous sampling that is not feasible with fixed sensors. As an associate professor in electrical and computer engineering at Michigan State University, I, Xiaobo Tan, lead an effort to develop robotic fish schools for patrolling water environments
My team works on creating small and inexpensive fish-like robots that carry multiple sensors for monitoring water quality and wireless communication devices. We envision the robots working in a school. These robots will essentially form a mobile-sensing network in water and gather the information of interest in a collaborative and adaptive manner.
So, why fish-like? The hydrodynamic shape minimizes drag and with this shape the robot fish can move through the water using rhythmic body and fin motions. Such movement offers much better maneuverability than propeller-based propulsion, allowing the robots to, for example, turn within a tight radius. That kind of maneuverability is especially helpful in dealing with the turbulences and currents the robots often encounter.
The robots we’re developing are unique in the sense that they are a hybrid of a robotic fish and an underwater glider. An underwater glider uses the effects of buoyancy to move, and it consumes energy only when changing course. By adopting gliding as a main locomotion mode and tail movement as a maneuvering mechanism, we hope that our robots can work for extended periods on each battery charge. We view this efficiency as crucial if the environmental monitoring industry is going to adopt this technology.
Our research has been supported by several projects funded by the National Science Foundation, including a rapid response grant following the Gulf of Mexico oil spill in 2010.

Like Techmailers and follow  on TwitterFacebookPinterest for more mails and updates. 

If you have any questions, let us know in the comments below, or follow us Google+ and feel free to interact!

Comments

Popular posts from this blog

What is the difference between a frigate,cruiser,destroyer, battleship ?

Usually the size and the purpose. The period of time sometimes distinguishes the name.Modern navy combat ships are generally divided into seven main categories. The categories are: Aircraft Carriers, Battleships, Cruisers, Destroyers, Frigates, Submarines, and Amphibious assault ships. There are also support and auxiliary ships, including the minesweeper, patrol boat, and tender. During the age of sail, the ship categories were divided into the ship of the line, frigate, and sloop-of-war. Frigate Frigate is a name which has been used for several distinct types of warships at different times. It has referred to a variety of ship roles and sizes. From the 18th century, it referred to a ship smaller and faster than a ship-of-the-line, used for patrolling and escort work rather than fighting fleet actions. In modern military terminology, the definition of a frigate is a warship intended to protect other warships and merchant marine ships and as anti-submarine warfare (ASW) combata

The 101 Most Useful Websites

Here are my picks for the 101 most useful websites of the year. The Most Useful Websites and Web Apps The sites mentioned here, well most of them, solve at least one problem really well and they all have simple web addresses (URLs) that you can easily learn by heart thus saving you a trip to Google. 01.   screenr.com   – record movies of your desktop and send them straight to YouTube. 02.   bounceapp.com   – for capturing full length screenshots of web pages. 03.   goo.gl   – shorten long URLs and convert URLs into   QR codes . 04.   unfurlr.come   – find the original URL that’s hiding behind a short URL. 05.   qClock   – find the local time of a city using a   Google Map . 06.   copypastecharacter.com   – copy special characters that aren’t on your keyboard. 07.   postpost.com   – a better search engine for twitter. 08.   lovelycharts.com   – create flowcharts, network diagrams, sitemaps, etc. 09.   iconfinder.com   – the best place to find icons of all sizes. 10.

How does a search engine fetch answers to your queries in less than second?

Ever wondered how does a  search engine  fetch answers to your  queries  in less than second?  Google  says it's a mixture of science, creativity, experimentation and cold, hard maths. This is how it works: