Skip to main content

The Spark Plug Story .





The first documented use of a spark plug in an internal combustion engine was attributed to the Belgian Engineer Jean Joseph Étienne Lenoir in 1859. Lenoir is known for developing the first internal combustion engine, which burned a mixture of coal gas and air. The air-fuel mixture it aspirated was ignited by a "jumping spark" ignition system, which he patented in 1860.



Lenoir’s ignition system created sparks by using high voltage electricity to jump an air gap. This was accomplished by sending mechanically generated low voltage pulses through a type of electrical transformer known as a Ruhmkorff coil. The coil would transform the low voltage pulses into lower current, high voltage pulses, suitable for spark generation.

 Reliably igniting over 20 million combustion cycles while surviving exposure to the extreme temperatures and pressures of ignited fuel would prove to be a formidable challenge. All spark plugs are fundamentally composed of two electrodes separated by an insulator. These electrodes converge at a «spark gap», where spark generation occurs. As the initial current flows from the ignition coil to the spark plug’s electrodes, the flow of electricity is initially blocked by the insulating properties of the air-fuel mixture within the gap. As the voltage pulse ramps up, the potential created between the electrodes begin to restructure the gases within the spark gap. As the voltage increases further, the insulating limit or the dielectric strength of the spark-gap gases begin to break down, causing it to ionize.

The first spark plugs had a very minimal set of operational requirements. Their main design concerns were the plug's fit and position and its ability to maintain an operating temperature range that would allow the plug end to self-clean by burning off deposits. The thermal properties of a spark plug are designated by a relative heat range.

The emergence of leaded gasoline in the 1930s would also cause aggressive deposit buildup on the mineral insulator ends. To keep up with this, construction was shifted towards a single piece design composed of a ceramic called sintered alumina.

Sintered alumina plugs operated at much higher temperatures, which helped counteractact the fouling issues caused by leaded fuels via deposit burn-off. It’s electrical insulation properties also allowed much higher voltages to be used, tolerating up to 60,000 volts. This would be further improved by the addition of ribs which increased the surface area of the insulator. Modern spark plug still used sintered alumina and can tolerate voltages well past 100,000 volts.

Comments

Popular posts from this blog

What is the difference between a frigate,cruiser,destroyer, battleship ?

Usually the size and the purpose. The period of time sometimes distinguishes the name.Modern navy combat ships are generally divided into seven main categories. The categories are: Aircraft Carriers, Battleships, Cruisers, Destroyers, Frigates, Submarines, and Amphibious assault ships. There are also support and auxiliary ships, including the minesweeper, patrol boat, and tender. During the age of sail, the ship categories were divided into the ship of the line, frigate, and sloop-of-war. Frigate Frigate is a name which has been used for several distinct types of warships at different times. It has referred to a variety of ship roles and sizes. From the 18th century, it referred to a ship smaller and faster than a ship-of-the-line, used for patrolling and escort work rather than fighting fleet actions. In modern military terminology, the definition of a frigate is a warship intended to protect other warships and merchant marine ships and as anti-submarine warfare (ASW) combata...

The 101 Most Useful Websites

Here are my picks for the 101 most useful websites of the year. The Most Useful Websites and Web Apps The sites mentioned here, well most of them, solve at least one problem really well and they all have simple web addresses (URLs) that you can easily learn by heart thus saving you a trip to Google. 01.   screenr.com   – record movies of your desktop and send them straight to YouTube. 02.   bounceapp.com   – for capturing full length screenshots of web pages. 03.   goo.gl   – shorten long URLs and convert URLs into   QR codes . 04.   unfurlr.come   – find the original URL that’s hiding behind a short URL. 05.   qClock   – find the local time of a city using a   Google Map . 06.   copypastecharacter.com   – copy special characters that aren’t on your keyboard. 07.   postpost.com   – a better search engine for twitter. 08.   lovelycharts.com   – create flowcharts, network diagrams, ...

How does a search engine fetch answers to your queries in less than second?

Ever wondered how does a  search engine  fetch answers to your  queries  in less than second?  Google  says it's a mixture of science, creativity, experimentation and cold, hard maths. This is how it works: